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1 – Practical setting, an example

Process tomography

• Measurement model: electrical impedance tomography

• Measurements carried out in 2 – 40 ms: frame rate

• Evolution model: Stochastic convection-diffusion model

• Estimation scheme: Linear or extended Kalman filter

• The models are only approximate and include several auxiliary unknowns

• Compute the estimates (and the associated covariances) within a frame
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• Large scale problems – relative to the computational resources

• The approximation problem dual:

– Given computational resources, can we exploit increasing accuracy of

measurements?

– Given the accuracy of the measurements: how much can we reduce the model?

• The uncertainty problem: How to deal with auxiliary unknowns: unknown boundary

data, uninteresting (distributed) parameters, slightly unknown geometry, grossly

approximative physical models etc.

• In many applications the modelling errors dominate the measurement errors

• Examples

– Optical tomography

– Electrical impedance tomography, stationary and nonstationary

– Estimation of the coefficients of the heat equation
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2 – The idea behind approximation/modelling error model

• Let Ā and x̄ represent physical reality

y = Āx̄ + e = Ax + (Āx̄ − Ax) + e

= Ax + ε(x̄) + e

• The idea: treat ε as a random variable (additional noise) and compute its (second

order joint) statistics.

• Clearly, ε cannot be computed since Ā and x̄ cannot be.

• Construct a sequence of increasingly accurate approximations

A < A1 < A2, . . . and x < x1 < x2, . . .

• Can we capture the statistical structure by approximating ε ≈ Akxk − Ax for

some small k over the prior model for xk? The answer is often yes.

• Joint statistics of (y, x).
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3 – Modelling errors

• Typical sources:

– Unknown boundary conditions

– Inaccurate geometry

– Physical models: convection-diffusion model with Navier-Stokes flow

• Feasible models for the uncertainties can often be constructed

• Simulations (forward problems) may be carried out readily: model for Ā?

• Treatment of model errors: fix the prior model and uncertain parameters for A,

compute the approximative second order statistics for ε over the prior
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4 – Optical tomography

• Single modulation frequency data

−∇ · κ∇Φ(ω) + µaΦ(ω) +
iω

c
= q0, in Ω

Φ(ω) + 2κϑ
∂Φ(ω)

∂ν
= gs, on ∂Ω

• Prior model: smooth Gaussian MRF’s in 2D, simulations

• Typically required number of nodes ∼ 4000 −−15000, use a mesh with 700

nodes

• Diminishing noise level −→ more accurate estimates?
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Figure 1: Effect of noise level, left: scattering coefficient, right: absorbtion coefficient.

Red: conventional error model @ 700 nodes, Black: approximation error model @ 700

nodes, Blue: conventional error model @ 4200 nodes.
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Figure 2: Blocky object, low prior density: absorbtion coefficient
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Figure 3: Blocky object, low prior density: scattering coefficient
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5 – Electrical impedance tomography

• The governing equations for the complete electrode model are

∇ · (σ∇u) = 0, x ∈ Ω

u + zℓσ
∂u

∂ν
= U (ℓ), x ∈ eℓ, ℓ = 1, 2, . . . , L

∫
eℓ

σ
∂u

∂ν
dS = I(ℓ), x ∈ eℓ, ℓ = 1, 2, . . . , L

σ
∂u

∂ν
= 0, x ∈ ∂Ω\ ∪L

ℓ=1 eℓ

• Simple test with real data: a 3D tank filled with tap water, a single conductivity to

estimate, y ∈ R
1500

– Forward problem mesh density with 800 nodes: error 40% → 0.5% when

employing the approximation error model
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6 – Structure of the approximation errors
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Figure 4: The measurements and predictions for a homogeneous tank(part).
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7 – 3D tank EIT with two insulating rods, smooth MRF prior mode l

Figure 5: Left: Using ordinary likelihood model. Right: enhanced error model.
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8 – State estimation and Kalman filters

• The state space representation

xt+1 = Ftxt + Btut + wt state evolution equation

yt = Gtxt + vt observation equation

• Representation for the state, models for Ft, Gt and the covariances Γwt
and Γvt

• Trivial models for the covariances?

• Approximation/modelling error model for the (extended) Kalman filter (linear

Gaussian case: closed form and nonlinear cases: Monte Carlo simulations)
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9 – The stochastic CD equation

• The stochastic CD equation

dxt = ∇ · κ∇xt dt − ~vt · ∇xt dt + dWt

where dWt is Brownian motion.

• Need: initial and boundary conditions - these are usually partially unknown

• Model the uncertainty in parameters, discretize space, time and compute the

statistics for
∫

dWt over the measurement intervals.

– Build a statistical model for the missing boundary conditions

– Use approximation error theory for a) discretization and b) parameters of the

CD model etc.
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10 – Practical example

• Is the statistical model good enough in practice?

• A practical example

– Model: Stationary 2D single phase rotating flow in a circular tank

– Reality: Nonstationary 3D turbulent two phase flow in a tank with a rotating

blade
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Figure 6: The water-filled ping-pong ball.
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11 – State space identification and error estimates

• The Bayesian framework in principle allows for feasible error estimates

• Inverse problems typically exhibit small measurement errors

• Infeasible and misleading prior models can easily be constructed

• The key point in modelling

Feasible modelling of the uncertainty!

• Reliability and quality of the estimates and the error estimates.

• An example: 1D heat equation, the other end insulated, the other end can be

heated (Dirichlet), estimate the segmentwise constant diffusion and perfusion

coefficients: effect of model reduction
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12 – State space identification: Ultrasound probing

• Use ultrasound therapy setting to estimate the thermal characteristics of the target

• Scan the target with an ultrasound focus, raise the temperature locally a few

degrees

• Use MRI to measure the temperature evolution, errors 1◦C.
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Figure 7: Mesh for estimation: 2965 elements and 1533 nodes. Essential convergence

with 65000 elements.
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Approximation error model Conventional model

True X̂ σ̂ True Error X̂ σ̂ True Error

κ(II) 0.650 0.597 0.025 0.053 (2.1 × σ̂) 0.567 0.020 0.083 (4.2 × σ̂)

κ(III) 0.400 0.421 0.014 0.021 (1.5 × σ̂) 0.523 0.024 0.123 (5.2 × σ̂)

κ(IV) 0.800 0.732 0.093 0.069 (0.7 × σ̂) 1.367 0.142 0.567 (4.0 × σ̂)

β(II) 4524 6777 634 2253 (3.6 × σ̂) 2104 485 2420 (5.0 × σ̂)

β(III) 3393 3283 82 110 (1.3 × σ̂) 4695 85 1302 (15.3 × σ̂)

β(IV) 6409 6241 318 168 (0.5 × σ̂) 8951 360 2542 (7.1 × σ̂)
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13 – Comments

• Simple and less simple approaches for how to model the model uncertainties and

the effect of (too much) reduced computational models

• The converse to model reduction: how to exploit increased accuracy of data

without practically too complex computational models

• In practice there are three models: a) the real one (physics), b) a relatively

accurate approximation and c) the one to be used in the inversion.

• Setting up the model b) is usually a tedious job but once the joint statistics of

(y, x) has been computed, applying the enhanced error model leads to

approximately the same computational complexity as the conventional error model.
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